Architectural Musings on SDN

(“and now for something completely different...”)

arGhltectural
'3 musmgs

David Meyer
CTO and Chief Scientist, Brocade
Director, Advanced Technology Center, University of Oregon
RIPE 66
May 2013

Dublin, Ireland
dmm@{brocade.com,uoregon.edu,1-4-5.net,...}
http://www.1-4-5.net/~dmm/talks/ripe66.pdf

Agenda

Introduction

Architectural Features for Scalability and Evolvability
— and why we might care

A Quick Tour Through the SDN Design Space

A Few Conclusions

Q&A

Danger Will Robinson!!!

!

: @3 . 3 ‘
= = 8 ! 1
S . '
= 3
< “‘!
s 2 '
) : 1L \I
a o) : S
. ' N

—_—
-~
-
—

;.v' \

|]Wlllm

2
/u

This talk is intended to be controversial/provocative
(and a bit “sciencey”)

3

Introduction

“Lots” of hype around OpenFlow, SDN, SDS, ...
— duh

In trying to understand all of this, | went back architectural principles
— An attempt to take an objective look at all of this
— Ideas from control theory, systems biology, quantitative risk engineering, ...

Obviously we need programmatic automation of
— Configuration, management, monitoring, optimization(s), ...
— Some components already available
Puppet, Chef, rancid, ...

— Note everything open (interfaces, APIs, protocols, source) — along with s/w a macro-trend

Perhaps obvious:
— Scalability and Evolvability key to building/operating the Internet
— But what are Scalability/Evolvability, and what architectures enable them?

Through this lens: What is going on with OpenFlow, SDN, ...?

Bottom Line

| hope to convince you that uncertainty and
volatility are the “coin of the realm” of the
future, why this is the case, how SDN (and
the rise of software in general) is accelerating
this effect, and finally, what we might do

to take advantage of it.°

0 s/take advantage of/survive/ -- @smd

What are
Scalability and Evolvability?

First, why do we care?
— Goes without saying?
— That said...

Scalability is robustness to changes to the size and complexity of a
system as a whole

Evolvability is robustness of lineages to changes on long time scales

Other system features cast as robustness

— Reliability is robustness to component failures
— Efficiency is robustness to resource scarcity
— Modularity is robustness to component rearrangements

In our case: holds for protocols, systems, and operations

OK, Fine. But What is Robustness?

Definition: A [property] of a [system] is robust if it is [invariant] with respect to a [set
of perturbations], up to some limit

* Fragility is the opposite of robustness
— If you're fragile you depend on 2nd order effects (acceleration) and the curve is concave

— Catch me later if you'd like to chat further about this...

 Asystem can have a property that is robust to one set of perturbations and yet
fragile for a different property and/or perturbation = the system is Robust Yet
Fragile (RYF-complex)

— Orthe system may collapse if it experiences perturbations above a certain threshold (K-fragile)

 Example: A possible RYF tradeoff is that a system with high efficiency (i.e., using
minimal system resources) might be unreliable (i.e., fragile to component failure) or
hard to evolve

See Alderson, D. and J. Doyle, “Contrasting Views of Complexity and Their Implications For Network-Centric
Infrastructures”, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS,
VOL. 40, NO. 4, JULY 2010

Robust Yet Fragile (RYF)

a system] can have
a property] robust for
a set of perturbations]

Yet be fragile for

[]
Or []

Robust Conjecture: The RYF tradeoff is a
. hard limit that cannot be overcome.

Slide courtesy John Doyle

RYF Examples

Robust Yet Fragile
© Efficient, flexible metabolism & Obesity and diabetes
© Complex development @® Rich microbe ecosystem
© Immune systems ® Inflammation, Auto-Im.
© Regeneration & renewal @® Cancer
Complex societies 2 Epidemics, war, ...
Advanced technologies ¢ Catastrophic failures

 “Evolved” mechanisms for robustness allow for, even
facilitate, novel, severe fragilities elsewhere

* Often involving hijacking/exploiting the same mechanism
— We've certainly seen this in the Internet space

* There are hard constraints (i.e., theorems with proofs)

Brief Aside: Fragility and Scaling

(geeking out for a sec...)

A bit of a formal description of fragility

— Let z be some stress level, p some property, and

— Let H(p,z) be the (negative valued) harm function

— Then for the fragile the following must hold
* H(p,nz) < nH(p,z) forO<nz<K
* Basically, the “harm function” is non-linear
* This inequality is importantly non-mean preserving (Jensen’s Inequality)
* Non-mean preserving: H(p,(z, +z,)/2) != (H(p,z,) + H(p,z,))/2

— 2> model error and hence additional uncertainty

For example, a coffee cup on a table suffers non-linearly more from large deviations (H(p, nz)) than
from the cumulative effect of smaller events (nH(p,z))
— Sothe cup is damaged far more from (i.e., destroyed by) tail events than those within a few o of the mean
— Too theoretical? Perhaps, but consider: ARP storms, micro-loops, congestion collapse, AS 7007, ...
— BTW, nature requires this property
* Consider: jump off something 1 foot high 30 times v/s jumping off something 30 feet high once

When we say something scales like O(n?), what we mean is the damage to the network has
constant acceleration (2) for weird enough n (e.g., outside say, 10 o)
— Again, ARP storms, congestion collapse, AS 7007, DDQOS, ... 2 non-linear damage

Something we don’t have time for: Antifragility

— Is this related to our work? See http://www.renesys.com/blog/2013/05/syrian-internet-
fragility.shtml

Robusthess vs. Complexity
Systems View

R Domain of the Robust

Domain of the fragile

Pumax

What this curve is telling us is that a system needs complexity to achieve robustness
(wrt some feature to some perturbation), but like everything else, too much of
of a good thing....

Ok, but what is Complexity?

“In our view, however, complexity is most
succinctly discussed in terms of functionality
and its robustness. Specifically, we argue that
complexity in highly organized systems arises
primarily from design strategies intended to
create robustness to uncertainty in their
environments and component parts.”

See Alderson, D. and J. Doyle, “Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures”,
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 4, JULY 2010

BTW, This Might Also Be Obvious But...

Networks are incredibly general and expressive structures
— G=(VE)

* Networks are extremely common in nature

— Immune systems, energy metabolism, transportation systems, Internet, macro
economies, forest ecology, the main sequence (stellar evolution), galactic
structures,

— “Almost everything you see can be explained as either a network and/or a queue”

* So it comes as no surprise that we study, for example, biological systems
in our attempts to get a deeper understanding of complexity and the
architectures that provide for scalability, evolvability, and the like

e Ok, this is cool, but what are the key architectural takeaways from this
work for us ?
— where us \in {ops, engineering, architects ...}
— And how might this effect the way we build and operate networks?

Key Architectural Takeaways

 What we have learned is that there are fundamental architectural
building blocks found in systems that scale and are evolvable. These
include

— RYF complexity
— Bowtie architectures

— Massively distributed with robust control loops
* Contrast optimal control loops and hop-by-hop control

— Highly layered

* But with layer violations

— Protocol Based Architectures (PBAs)

— Degeneracy

Bowties 101

Constraints that Deconstrain

input =——=mjp CcOre == output

high variability high variability
less constraints less constraints

F more constraints
| less variability

many
many

few

For example, the reactions and metabolites of core
metabolism, e.g., ATP metabolism, Krebs/Citric Acid
cycle signaling networks, ...

See Kirschner M., and Gerhart J., “Evolvability”, Proc Natl Acad Sci USA, 95:8420-8427, 1998.

15

But Wait a Second

Anything Look Familiar?

>
=
<
£

email WWW phone...

high variability
less constraints

SMTP HTTP RTP...
TCP UDP...

IP

more constraints

ethernet PP%
(CSMA async sonet...\

{ s COre mmmmd output

copper fibre radio...

inpu

high variability
less constraints

Bowtie Architecture Hourglass Architecture

The Protocol Hourglass idea appears to have originated with Steve Deering. See Deering, S., “Watching the Waist of the Protocol Hourglass”, IETF 51,
2001, http://www.iab.org/wp-content/IAB-uploads/2011/03/hourglass-london-jetf.pdf. See also Akhshabi, S. and C. Dovrolis, “The Evolution of Layered
Protocol Stacks Leads to an Hourglass-Shaped Architecture”, http://conferences.sigcomm.org/sigcomm/2011/papers/sigcomm/p206.pdf.

16

So Let’s Have a Look at OF/SDN
Here’s the Thesis

Computer Industry Network Industry

* Separation of Control and Data Planes
* Open Interface to Data Plane

* Centralized Control (logically?) 1

Graphic Courtesy Rob Sherwood

A Closer Look

LApp JJ\PP J “NB API” ™

< O e | L (A J/
OpenFlow Controller Control
> plane

+e = OpenFlow Protocol . > .
™ L [] [J
. . : - ™
. Simple Packet . Simple Packet
s Forwarding . Forwarding
) Hardware) Hardware
" . » Data
: Simple Packet pla ne
. Forwarding
Hardware
Simple Packet
Forwarding
Hardware -’
Simple Packet
Forwarding
Hardware 18

Graphic courtesy Nick Mckeown

So Does the OF/SDN-Compute Analogy Hold?

Mainframe Business Model

Central Logic Manufacture
*Proprietary & closely
guarded

|_+Single source

Central Logic Manufacture
*Standard design (x86)
*Multiple source

*AMD, Intel, Via, ...

Finished Hardware Supply
*Proprietary & closely
guarded

| Singlesource |

Finished Hardware Supply
*Standard design
*Multiple source
*Dell, SGI, HP, IBM

System Software Supply
*Proprietary & closely
guarded

| -Singlesource |

System Software Supply
eLinux (many
distros/support)
| *Windows & other |

proprietary offerings

Application Stack
*Not supported
*No programming tools

'NQ ard nan” ECQSMSI.em

Application Stack
*Public/published APIs
*High quality prog tools

*Rich 3 party ecosystem

Net Equipment
Example:

Commodity Server

* Juniper EX 8216 (used in core or aggregation layers)

* Fully configured list: $716k w/o optics and $908k with optics
e Solution: Merchant silicon, H/W independence, open source protocol/mgmt stack

Really Doesn’t Look Like It

A better analogy would be an open source network stack/OS on white-box hardware

19
Graphic courtesy James Hamilton, http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton POA20101026 External.pdf.

BTW, Logically Centralized?

Control Application:

Traffic Engineering

Control Application:

Route Computation

|

value 1
link 2 | value 2
]

State Management [inkzlvaie 1

link 4 | value 2
(]]

Key Observation: Logically centralized = distributed system = tradeoffs between
control plane convergence and state consistency model. See the CAP Theorem.

Architectural Implication: If you break CP/DP fate sharing, you have to deal the following
physics: Q(convergence) = 2 RTT(controller, switch,) + PPT(controller) + PPT(switch))

Graphic courtesy Dan Levin <dlevin@net.t-labs.tu-berlin.de>

20

BTW, Nothing New Under The Sun...

Separation of control and data planes is not a new idea. Nor is flow-based
forwarding. Examples include:

— SS7

— Ipsilon Flow Switching
* Centralized flow based control, ATM link layer
* GSMP (RFC 3292)

— AT&T SDN
* Centralized control and provisioning of SDH/TDM networks

— A similar thing happened in TDM voice to VOIP transition

» Softswitch - Controller
* Media gateway = Switch
e H.248 - Device interface

* Note 2" order effect: This was really about circuit = packet

— ForCES

* Separation of control and data planes
* RFC 3746 (and many others)

Drilling Down a Bit
OpenFlow Switch Model Version 1.0

Redirect to Controller

A
Encapsulate packet to controller
Apply actions _
Packet . Flow Table < Forwal.*d with
(TCAM) edits
_ \4
Too simple: Drop

- Feature/functionality
- Expressiveness — consider shared table learning/forwarding bridge 22

OK, Fast Forward to Today: OF 1.1+

OpenFlow Switch
Ingress Packet +
Packet t ingress port + ottt | Packet
In "1 Table metadata | Tope Table |Packet | EXecute i = g

ﬁ ——— —p- s nx P : »: ACt|on ﬁ

: 0 . 1 n Action i

Action Action Set Set

Set={} Set trtttssees '

— — —

——

(a) Packets are matched against multiple tables in the pipeline

Why this design?
* Combinatoric explosion(s) s/a routes*policies in single table

However, intractable complexity: O(n!) paths through tables of a single switch
e c=aM4q

. where a = number of actions in a given table, | = width of match field, and
. a all the factors | didn’t consider (e.g., table size, function, group tables, meter tables, ...)

Too complex/brittle
* Algorithmic complexity

e Whatis a flow? So questjlonzulf the’z'ﬂow-based
+ Not naturally implementable on ASIC h/w abstraction “right” for general
* Breaks new reasoning systems (e.g., frenetic) network programmability?

* No fixes for lossy abstractions

* Architectural questions
23

The SDN Design Space

May be repeated
(stacked or recursive)

Putting it all Together

Open Loop Control + s/w + Moore’s Law >
Randomness, Uncertainty, and Volatility

l

email WWW phone...

SMTP HTTP RTP...
TCP UDP...

<€ OL/SDN

- CP/SDN

ethernet PPP...
(CSMA async sonet...\

€ OF/SDN

copper fibre radio...

* OF/SDN proposes a new architectural waist (not exactly sure where)
* CP/SDN makes existing control planes programmable

* OL/SDN is an application from the perspective of the Internet’s waist 2

Summary/Where to from Here?

First, note that SDN doesn’t do anything fundamentally different
. Moves architectural features (and maybe complexity) around in the design space

Be conservative with the narrow waist -- constraints that deconstrain
— We're pretty good at this
— Reuse parts where possible (we're also pretty good at this; traceroute a canonical example)

Expect uncertainty and volatility from above
— Inherent in software, and importantly, in acceleration
* We know the network is RYF-complex so we know that for H(p,x), the “harm” function, d2H(p,x)/dx2 # 0
* When you architect for robustness, understand what fragilities have been created
— > Software (SDN or http://spotcloud.com or ...) is inherently non-linear, volatile, and uncertain
* We need to learn to live with/benefit from the non-linear, random, uncertain

DevOps
— We already have some components (Puppet, Chef, rancid, ...)

Develop our understanding bottom up (by “tinkering”)
— Actually an “Internet principle”. We learn incrementally...
— Avoid the top-down (in epistemology, science, engineering,...)
— Bottom-up v. top-down innovation cycles — cf Curtis Carlson

Design future software ecosystems to benefit from variability and uncertainty rather than trying to engineer it out
(as shielding these systems from the random may actually cause harm)
— For example, design in degeneracy --i.e., “ability of structurally different elements of a system to perform the same function”.

In other words, design in partial functional overlap of elements capable of non-rigid, flexible and versatile functionality. This
allows for evolution *plus* redundancy. Contrast m:n redundancy (i.e., we do just the opposite).

Q&A

Thanks!

