The Latest Developments in DHCPv6

RIPE66, Dublin, Ireland May 2013

Tomek Mrugalski <tomasz@isc.org>

Agenda

- 1. About presenter and ISC
- 2. Client MAC address option
- 3. Load Balancing
- 4. DHCPv6 Failover
- 5. Provisioning IPv4 hosts in IPv6-only network
- 6. RADIUS option

Who is Tomek?

- M.Sc., Ph.D from Gdansk University of Technology
- Primary author of Dibbler
 - Portable DHCPv6 implementation (srv, cli, relay)
 - Supports Win 2k-Win8, Linux, BSD, Solaris
 - Confirmed use in 34 countries
- 7 years at Intel (Network Quality Labs, chipsets group)
- 2 years at ISC
 - Lead Developer of BIND10 DHCP (Kea)
 - Occasional contributor to ISC-DHCP
- Active IETF participant since 2009
 - DHC WG co-chair
 - 2 RFCs, 15+ drafts

What is ISC?

Internet Systems Consortium, Inc. (ISC) is a non-profit 501(c)(3) public benefit corporation dedicated to supporting the infrastructure of the universal connected self-organizing Internet - and the autonomy of its participants - by <u>developing and maintaining</u> core production quality <u>software</u>, protocols, and operations.

DHCP in IETF

Active work in DHCPv4

MAC and DHCPv6 :: Overview

- DHCPv4 had natural IPv4:MAC address mapping
- DHCPv6 is based on DUID concept
 - Generated once, stored => more stable
 - 4 types: link-local+time, link-local, entreprise, uuid
- DUID solves some issues...
 - Change NICs => new DHCPv4 client
 - Some devices don't have fixed MACs
 - Cheap NICs can have the same MACs (or so they say)
- DUID introduces new ones...
 - Dual boot: Linux and Windows use different DUIDs
 - Reinstall OS: => new DUID
 - VM cloning => the same DUIDs
- MAC was not used directly in DHCPv6 (until now)

RFC 6939 (RFC-Ed) draft-ietf-dhc-dhcpv6-client-link-layer-addr-option

MAC and DHCPv6 :: Problem and solution

- Problems:
 - MAC not always available (clients behind relays)
 - Legal requirement to log IP:MAC mapping over time
- Solution:
 - Directly connected clients are easy to solve

DHCPv6 Load Balancing :: Overview

• Problem space:

- So you want to have more than one server?
- Your server is not beefy enough?

• Preference option

- Different preference: Clients will always pick up the server with greater preference => 100% of traffic to one server
- Equal preference: both servers must respond to SOLICT, client will discard one and pick the other => double* server load
- Solution: Load Balancing

RFC 6939 (RFC-Ed) draft-ietf-dhc-dhcpv6-client-link-layer-addr-option

DHCPv6 Load Balancing :: Solution

• Hash Bucket Assignments

- Server calculates hash, assigns packet to one of 256 buckets
- If this server is configured to handle specific bucket, then processes packet; otherwise drops it
- Good for:
 - Load Balancing (2 or more servers)
- Not suitable for:
 - High Availability
 - Lease Stability
 - Redundancy

draft-ietf-dhc-dhcpv6-load-balancing-00

Myths about DHCPv6 Failover

- I don't need it, there's so many IPv6 addresses
 - Server change => address change => Lease stability?
 - Prefix Delegation really that many?
- Multi-master database will save me
 - Get a subnet with 1 lease in it
 - Network split: 2 servers, each connected to its own DB master
 - Client A comes to server1, gets lease X
 - Client B comes to server2, gets lease X
 - Repeat this with 1000000 instead of 1 will only decrease probability
 - repeat with PD (added bonus: routing issues)
- DAD will save me
 - Will not work for Prefix Delegation
 - Will not work in non-broadcast environments

Disaster in 4 easy steps

draft-ietf-dhc-dhcpv6-failover-requirements-04

DHCPv6 Failover Grand Plan

- **Step 0:** Redundancy considerations
 - Published as RFC6853 (Feb. 2013)
- **Step 1:** Requirements document (info)
 - WGLC done, to be published soon
 - Comments welcome
- **Step 2:** Design document (std)
 - WG item, published -02
 - Text complete (no major missing parts)
 - Comments welcome
 - **Step 3:** Protocol document (std)
 - TBD
 - Possible extension drafts

draft-ietf-dhc-dhcpv6-failover-{requirements|design}

DHCPv6 Failover :: Overview

- Based on v4 failover draft, but simplified
- Hot standby (Active-passive only)
- No load balancing in design spec (likely extension)
- Recovery from:
 - Server crash
 - Network partition
- Major comcepts:
 - MCLT concept, Lazy Updates
 - state machines
 - Binding updates
 + conflict resolution
 - Connection management
 - 2 Allocation Algorithms (Proportional and Independent)
 - DDNS considerations
 - Lease reservation

draft-ietf-dhc-dhcpv6-failover-{requirements|design}

IPv4 provisioning in IPv6-only network

- **MAP** (Mapping Address and Port, DS-Lite successor)
 - Fully stateless (does not require per-session or persubscriber state)
 - draft-ietf-softwire-map-dhcp

• Lightweight 4over6

draft-softwire-lw4over6

DHCPv4-over-DHCPv6

draft-ietf-dhc-dhcpv4-over-dhcpv6

Attempts to unify/clarify:

- draft-dhc-dhc-v4configuration,
- draft-ietf-softwire-unified-cpe

RADIUS + DHCPv6

NAS (RADIUS client/ DHCPv6 relay)

- Very similar to DHCPv4 counterpart
- Access control done on NAS
 - NAS asks RADIUS
 - RADIUS server responds
 - Negative: NAS drops the DHCP client request
 - Positive: NAS forward DHCP client request with include RADIUS attributes
 - Server may use RADIUS attributes
 - Delegated-IPv6-prefix (123)
 - Framed-IPv6-address (168)
 - Delegated-IPv6-prefix-pool (171)
 - Stateful-IPv6-address-pool (172)

RADIUS server DHCPv6 server

DHCPv6 in IETF :: Other work

• DHCPv6 Stateful Issues

- draft-ietf-dhc-dhcpv6-stateful-issues
- RFC3315bis planned

• Multiple Provisioning domains

Whole Homenet WG

• Routing configuation over DHCPv6

- draft-ietf-mif-dhcpv6-route-option
- dying slowly...

What to do?

- Speaking now is good
- Posting comments to DHC mailing list is better
 - Subscribe https://www.ietf.org/mailman/listinfo/dhcwg
 - Post to dhcwg@ietf.org
 - Unsubscribe (optional)
- Consider going to IETF meeting
 - IETF87: Berlin, July 28 August 2, 2013
 - Helpful, but not required

DHC working group homepage: https://datatracker.ietf.org/wg/dhc/

Questions? Comments?

Thank you

isc.org

backup

Failover Design :: Communication

- 1. Communication over TCP
- 2. Reusing bulk leasequery framing, but with new FO-specific message types
- 3. TLS usage (optional)
- 4. Connection management (CONNECT, CONNECTACK, DISCONNECT)
- 5. State notifications
- Lease updates
 (BNDUPD, BNDUPDALL, BNDACK, UPDDONE)
- Pool requests (POOLREQ, POOLRESP)
- 8. Keep alive (CONTACT)

Failover Design :: Resource Allocation

1.Proportional allocation ("IPv4 failover-style")

- 1. Useful for limited resources (e.g. prefixes)
- 2. Pool may need to be rebalanced.
- 3. Only unleased resources are owned by specific server.
- 4. Released/expired resources return to primary
- 2. Independent allocation ("simple split")
 - 1. Useful for vast resources (e.g. /64 address pool)
 - 2. All resources are owned by specific server.
 - 3. Pools are never rebalanced.
 - 4. Released/expired resources return to its owner.
 - 5. Simpler, but MCLT restrictions still apply.

Failover Design :: MCLT concept & Lazy update

- 1. Lazy Update:
 - 1. Server assigns a lease and responds to a client
 - Server updates its partner at a later time (lockstep would introduce too much delay)
 Problem: failure between 1. and 2.
- 2. Maximum Client Lead Time
 - The maximum difference between lease time known by a client and acknowledged by its partner.
- 3. Useful in communications-interrupted
 - Server does not know if its partner extended any lease;
 - It knows that its parter could extend by at most MCLT;
 - To be on the safe side, server assumes that ALL leases were extended by MCLT.

