

BGP DDoS Mitigation

Gunter Van de Velde Sr Technical Leader NOSTG, Cisco Systems

May 2013

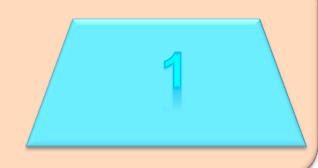
A simple DDoS mitigation mechanism explained

Bertrand Duvivier, bduvivie@cisco.com Gunter Van de Velde, gvandeve@cisco.com

DDoS Mitigation Adoption Cycle

Phase III

Dynamic application aware redirection and traffic handling


Phase II

- Malicious traffic mitigation
- Cleaning of Malicious traffic
- Dirty and clean traffic handling
- Usage of Multi-instance BGP

Phase I

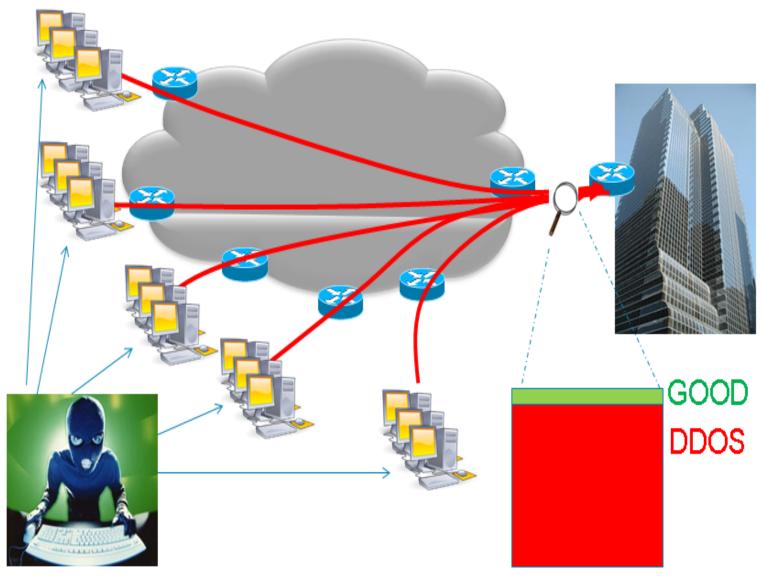
- o ACL
- o RTBH
- o PBR
- o uRPF

DDoS Overview

Distributed denial-of-service (DDoS) attacks target network infrastructures or computer services by sending overwhelming number of service requests to the server from many sources.

Server resources are used up in serving the fake requests resulting in denial or degradation of legitimate service requests to be served

Addressing DDoS attacks


Detection – Detect incoming fake requests

Mitigation

Diversion – Send traffic to a specialized device that removes the fake packets from the traffic stream while retaining the legitimate packets

Return – Send back the clean traffic to the server

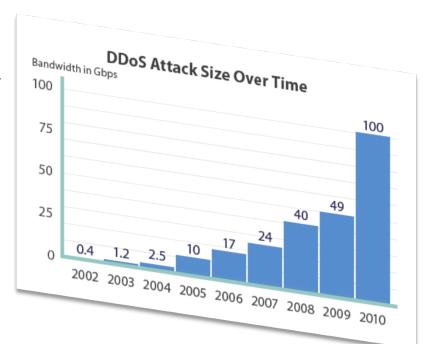
DDOS impact on Customer Business

DDOS impact on customer Business

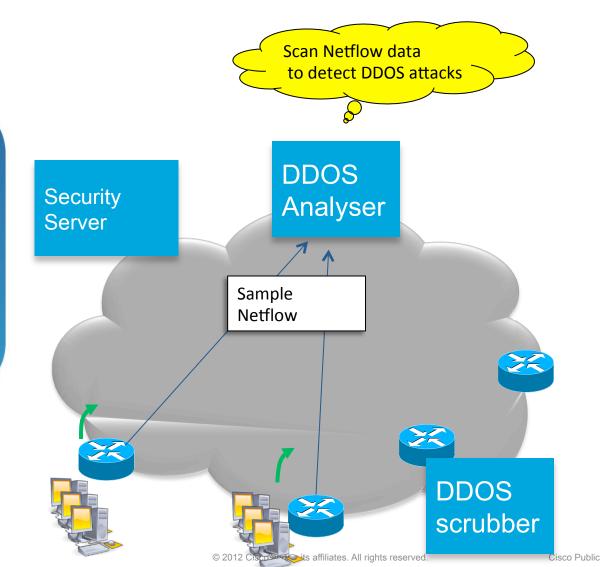
- Enterprise customer can't defend themselve, when DDoS hit the FW... it's already too late.
- SP could protect enterprise by cleaning DDoS traffic at ingress peering point.
- New revenue for SP.
- Mandated service to propose to Financial and visible customers.

2011 DDoS trends (Nanog source)

Any Internet Operator Can Be a Target for DDoS

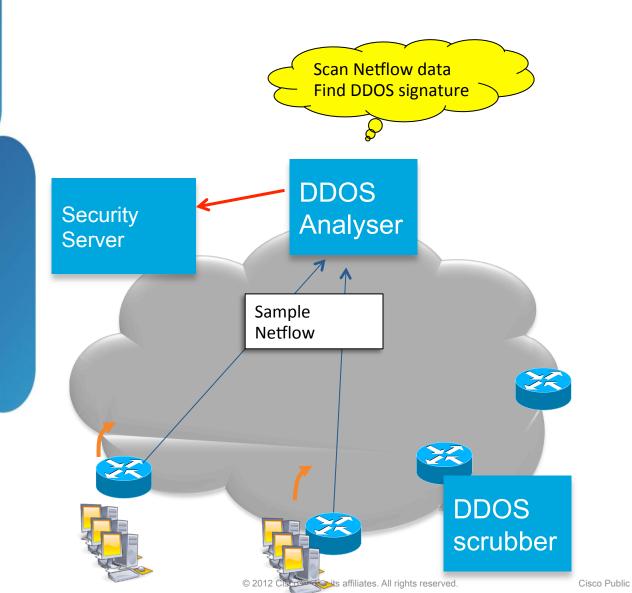

Ideologically-motivated 'Hacktivism' and On-line vandalism DDoS attacks are the most commonly identified attack motivations

 Size and Scope of Attacks Continue to Grow at an Alarming Pace

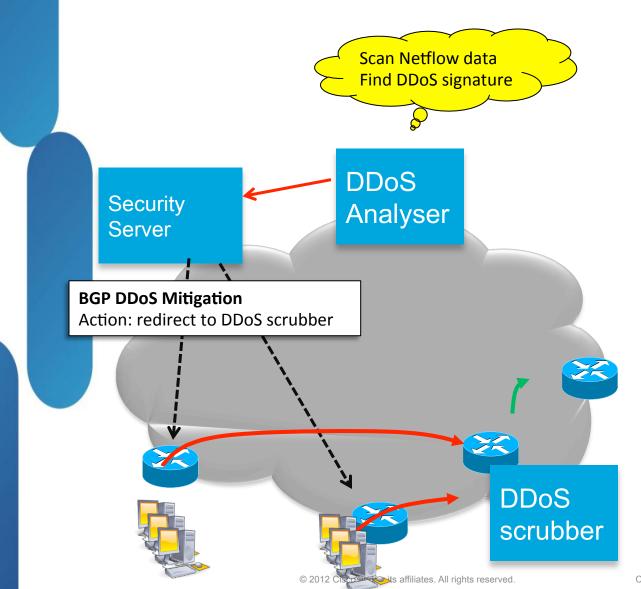

High-bandwidth DDoS attacks are the 'new normal' as over 40% of respondents report attacks greater than 1 Gbps and 13% report attacks greater than 10Gbps

Increased sophistication and complexity of layer-7 DDoS attacks, multi-vector DDoS attacks becoming more common

 First-Ever Reports of IPv6 DDoS Attacks 'in the Wild' on Production Networks

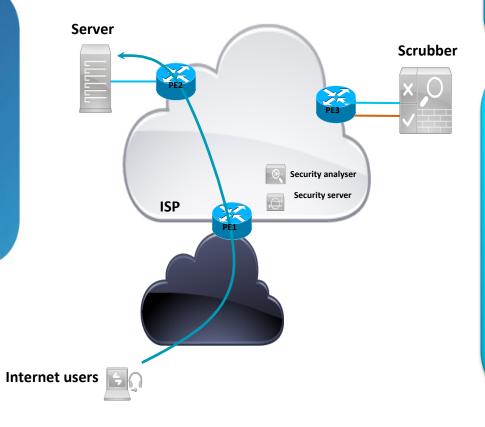


DDoS mitigation architecture 1. Detection (no DDoS)



DDoS mitigation architecture 2. Detection (DDOS)

DDoS mitigation architecture 3. Redirect traffic to DDOS scruber



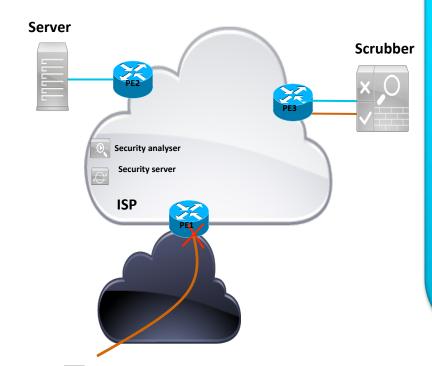
DDoS Mitigation: Architecture Considerations

- Normal traffic flow when there is no attack
- Redirect traffic from any edge PE to any specific DDoS scrubber
 Including the PE that is connected to the host network
- Granular (prefix level/network) diversion
 - Customers buy DDoS mitigation service for some prefixes
 - Pre-provisioned DDoS service for those prefixes (using policy such as standard community flag)
- Centralized controller that injects the diversion route
- VPN based Labeled return path for the clean traffic
 - To prevent routing loops
- Solution support redirection of BGP less/more specific prefixes or local originated prefixes (static route, redistributed route)
- Support for multi-homed customers
 - During attack, send clean traffic from DDOS scrubber to multiple PE's

The concept

Traffic under normal conditions

Traffic under normalized conditions

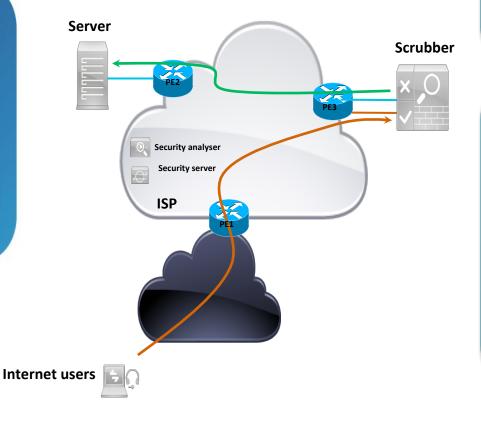

- Traffic takes shortest path
- Upstream and downstream traffic follow traditional routing
- ALL interfaces are in the GLOBAL routing table

Pre-provisioned DDoS instrumentation

- Traffic Scrubber
 Separate clean and malicious traffic
- Security Analyser
 Analyses Netflow/IPFIX statistics from the traffic flows
- Security server
 Actions upon traffic analysis by communication to infrastructure routers

Phase-1: Traditional DDoS mitigation

Traffic under DDoS condition - RTBH

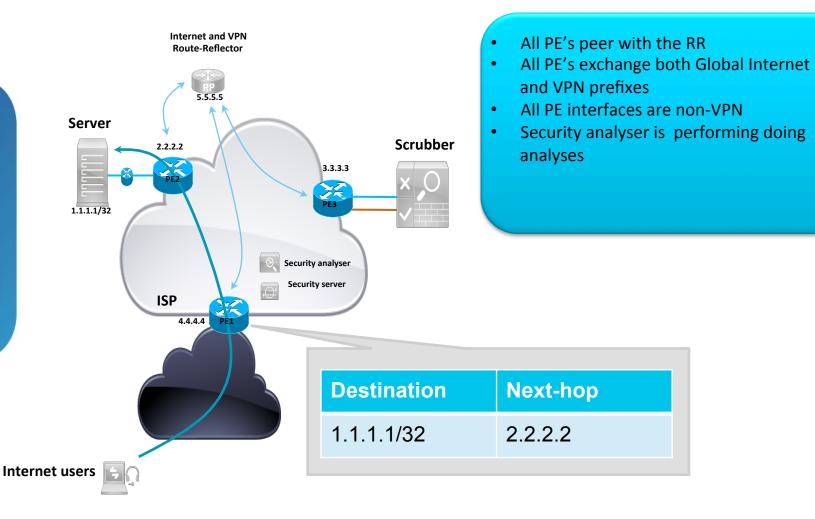


Traffic under DDoS condition

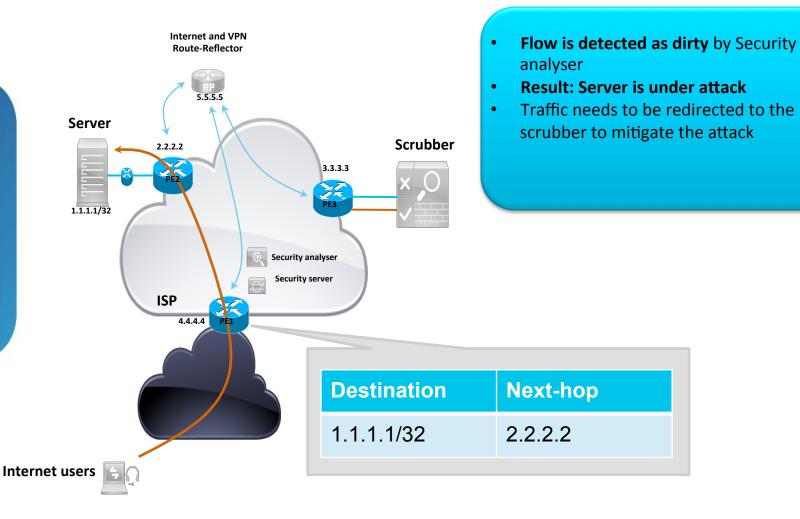
- Security analyser detected that the traffic flow is dirty
- Security server installs a filter upon ISP ingress router
- All (good and malicious) traffic is dropped at network ingress
- Operationally simple method
- Easy to remove filter if traffic normalizes
- Simple to debug and troubleshoot

Phase-2: BGP based DDoS

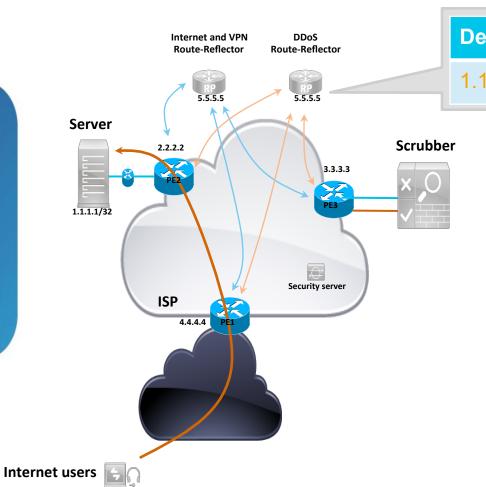
Traffic under DDoS condition


Traffic under DDoS condition

- Traffic is redirected to a scrubber
- Scrubber separates the clean from the malicious traffic
- Clean traffic is returned to original destination server

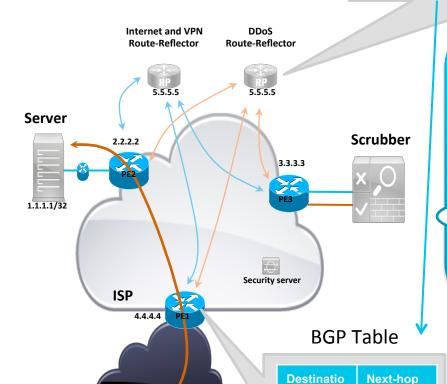

Goal

- Do not drop all traffic
- Collect traffic intelligence
- Operational simplicity
- Easy to remove redirect when traffic normalizes


Normal traffic condition

Server is under DDoS

Server is under DDoS



Destination	Next-hop
1.1.1.1/32	3.3.3.3

- DDoS Route-Reflector was pre-visioned
- Mitigation route to 1.1.1.1/32 is injected on the DDoS RR by the Security server
- Mitigation route to 1.1.1.1/32 is pointing to 3.3.3.3 on DDoS mitigation RR

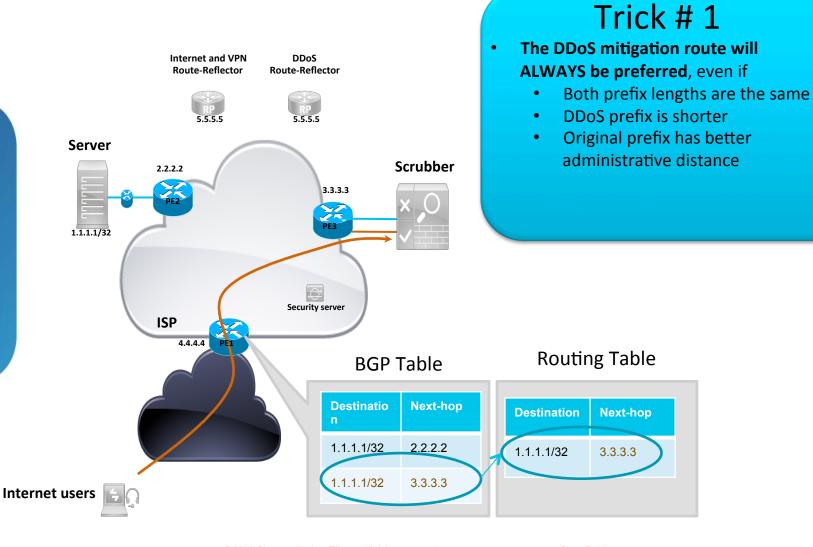
Server is under DDoS

Destination	Next-hop
1.1.1.1/32	3.3.3.3

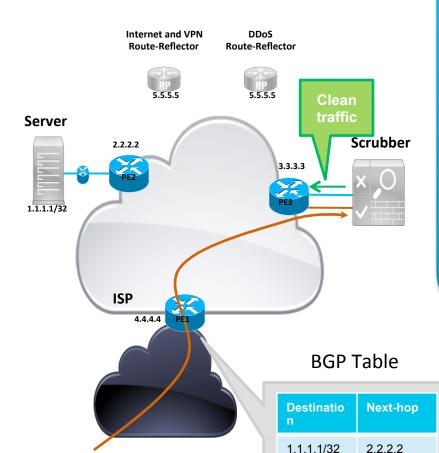
- Mitigation route to **1.1.1.1/32** is pointing to **3.3.3.3** is signalled to all PE's
- All PE's receive the mitigation route from the DDoS Mitigation RR
- Each PE will now have 2 routes to reach
 1.1.1/32
- Which route will the PE use?

Routing Table

Destination	Next-hop
1.1.1.1/32	????????? ???


2.2.2.2

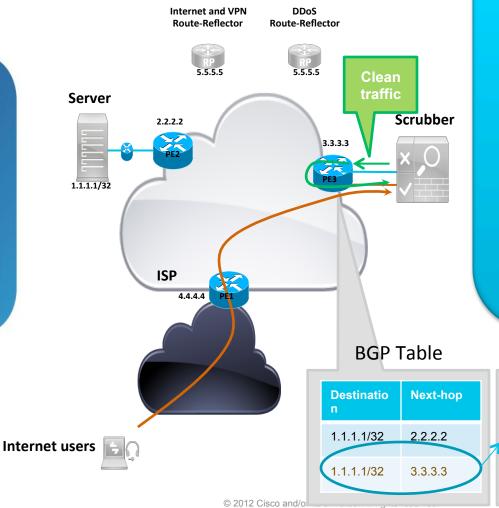
3.3.3.3


1.1.1.1/32

1.1.1.1/32

Server is under DDoS

Server is under DDoS

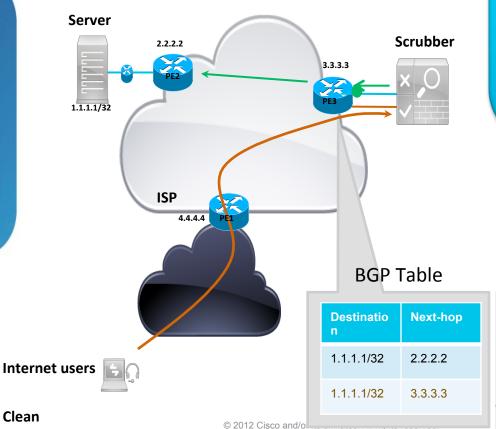


- The mitigated traffic flows towards PE3 (3.3.3.3)
- PE3 is sending the dirty flow towards the scrubber
- The scrubber will
 - Handle and remove the dirty traffic within the original flow
 - Send the cleaned traffic towards the original destination (1.1.1.1 at PE2 (2.2.2.2))

Routing Table

Destination	Next-hop
1.1.1.1/32	3.3.3.3

Server is under DDoS


Problem

- Scrubber sends traffic to PE3
- PE3 does routing lookup for 1.1.1.1 and finds that it is directly attached
- ROUTING LOOP!!!
- How do we fix this?
 - Often this is fixed with true routing clutches:
 - Back-to-back cables
 - L2-VPN's
 - Manual tunnels
 - Etc... (all operational hard to maintain)
 - Better to use a new isolated dynamic routing table for the clean traffic
 - Pre-provision this Clean table

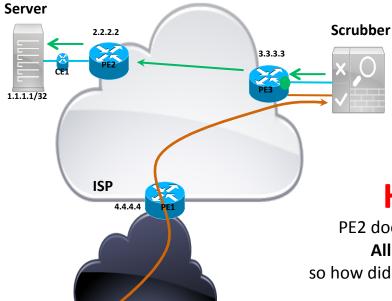
Routing Table

Destination	Next-hop
1.1.1.1/32	3.3.3.3

Server is under DDoS

- The clean traffic will be injected upon PE3 on an interface member of **VPN** Clean
- PE3 will now do a routing destination lookup for 1.1.1.1 in VPN Clean
- The matching routing table entry is pointing towards PE2 at 2.2.2.2
- The clean flow, which is **now part of VPN Clean** is sent towards PE2 reachable at 2.2.2.2

Routing Table


Destinatio n	Next-hop	VPN
1.1.1.1/32	3.3.3.3	Global
1.1.1.1/32	2.2.2.2	Clean

Server is under DDoS

Routing Table

Destinatio n	Next-hop	VPN
1.1.1.1/32	3.3.3.3	Global
1.1.1.1/32	CE1	Clean

- PE2 receives the clean flow within VPN clean
- PE2 does a destination address routing lookup in VPN clean
- A matching route is found in VPN clean
- Flow is forwarded towards CE1 onwards to Server

HOLD on a minute!

PE2 does **not** have **any interface** part of **VPN clean All interfaces** on PE2 are **global interfaces**so how did that clean route for 1.1.1.1 get into VPN clean?

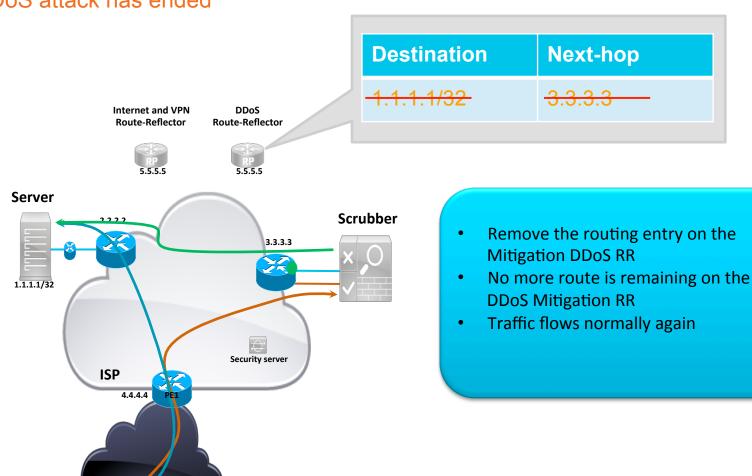
Server is under DDoS

Routing Table

Destinati on	Next- hop	VPN
1.1.1.1/32	CE1	Global
1.1.1.1/32	3.3.3. 3	Global
1.1.1.1	CE1	clean

Destinatio n	Next-hop	VPN
1.1.1.1/32	3.3.3.3	Global
1.1.1.1/32	CE1	Clean

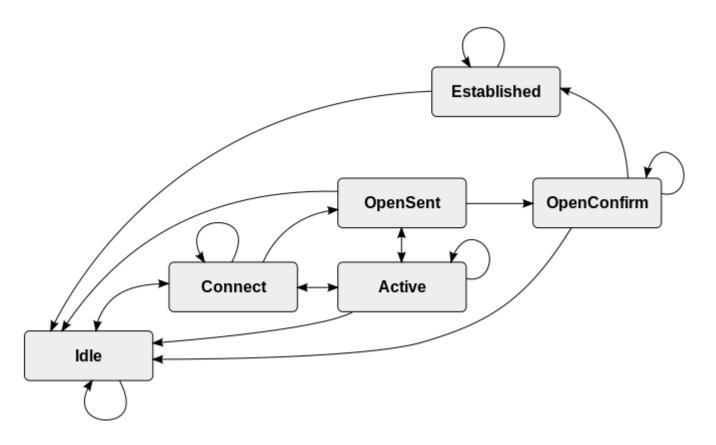
Server 2.2.2.2 Scrubber 3.3.3.3 PE3 A.4.4.4 PE1


Trick # 2

- Copy the locally BGP inserted route directly into VPN clean BGP table
- Neighbour details are inherited from the global table (i.e.)
 - Outgoing interface
 - Next-hop
- Interface pointing towards CE1 is NOT VPN aware
- This VPN clean distributed as normal VPN
- New CLI command to do that import from default-vrf route-policy ddos advertise-as-vpn

Going back to traditional traffic flow

DDoS attack has ended


Internet users

Why injecting DDoS in separate BGP instance?

- Solution support redirection of BGP less/more specific prefixes or local originated prefixes (static route, redistributed route)
- Indepenant Inter-Domain control plane and DDoS plane
 - No need to withdraw and re-signal Inter-Domain prefixes, keep internet route intacts in control plane.
 - Easy to troubleshoot

Any Questions?

Backup Slides Technical details

Configuration (1)

router bgp 99 instance ddos bgp router-id 3.3.3.3 bgp read-only bgp install diversion address-family ipv4 unicast !

router bgp 99 bgp router-id 2.2.2.2 address-family ipv4 unicast Creation of DDoS BGP instance

Allows config of 2th IPv4 or IPv6 instance Suppresses BGP Update Generation

Triggers BGP ddos instance to install diversion path to RIB, so that the paths are pushed down to FIB

Configuration (2)

Importing the global route's in the clean VRF

```
vrf clean
address-family ipv4 unicast
 import from default-vrf route-policy ddos advertise-as-vpn
 export route-target
 111:1
address-family ipv6 unicast
 import from default-vrf route-policy ddos advertise-as-vpn
 export route-target
 111:1
```

"show" commands

```
RP/0/0/CPU0:hydra-prp-A#show route
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, su - IS-IS summary null, * - candidate
default
       U - per-user static route, o - ODR, L - local, G - DAGR
       A - access/subscriber, a - Application route, (!) - FRR Backup
path
Gateway of last resort is not set
     1.0.11.0/24 [110/2] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
0
     1.1.1.1/32 [110/2] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
     2.2.2.2/32 is directly connected, 00:37:24, Loopback0
L
     3.3.3/32 [110/2] via 87.0.1.2, 00:36:19, GigabitEthernet0/2/1/9
     4.4.4/32 [110/3] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
                [110/3] via 87.0.1.2, 00:36:19, GigabitEthernet0/2/1/9
     5.5.5.5/32 [200/0] via 1.1.1.1, 00:34:22
            B > [200/0] \text{ via } 123.0.0.2, 00:34:22
[...]
```

"show" commands (1)

```
RP/0/0/CPU0:hydra-prp-A#show route
Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2
      ia - IS-IS inter area, su - IS-IS summary null, * - candidate default
      U - per-user static route, o - ODR, L - local, G - DAGR
      A - access/subscriber, a - Application route, (!) - FRR Backup path
Gateway of last resort is not set
     1.0.11.0/24 [110/2] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
0
     1.1.1.1/32 [110/2] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
    2.2.2.2/32 is directly connected, 00:37:24, Loopback0
L
     3.3.3/32 [110/2] via 87.0.1.2, 00:36:19, GigabitEthernet0/2/1/9
0
     4.4.4/32 [110/3] via 13.0.3.1, 00:36:19, GigabitEthernet0/2/1/5
0
                [110/3] via 87.0.1.2, 00:36:19, GigabitEthernet0/2/1/9
     5.5.5.5/32 [200/0] via 1.1.1.1, 00:34:22
           B > [200/0] via 123.0.0.2, 00:34:22
[...]
```

"show" commands (2)

```
RP/0/0/CPU0:hydra-prp-A#show route 5.5.5.5/32
Routing entry for 5.5.5.5/32
  Known via "bqp 2394-ro", distance 200, metric 0, type internal
  Installed Feb 19 22:56:45.896 for 00:34:33
  Routing Descriptor Blocks
    1.1.1.1, from 1.1.1.1
      Route metric is 0
    123.0.0.2, from 101.0.0.4, Diversion Path (bgp)
      Route metric is 0
  No advertising protos.
RP/0/0/CPU0:hydra-prp-A#show cef 5.5.5.5/32 det
5.5.5.5/32, version 60652, internal 0x14000001 (ptr 0xaf6e3840) [1], 0x0 (0x0), 0x0 (0x0)
Updated Feb 19 22:56:46.723
 local adjacency 87.0.1.2
Prefix Len 32, traffic index 0, precedence n/a, priority 4
  gateway array (0xae07a310) reference count 2, flags 0x8020, source rib (5), 0 backups
                [1 type 3 flags 0xd0141 (0xae10f8c0) ext 0x420 (0xaec261e0)]
  LW-LDI[type=0, refc=0, ptr=0x0, sh-ldi=0x0]
   via 123.0.0.2, 2 dependencies, recursive [flags 0x6000]
    path-idx 0 [0xaf6e3c00 0x0]
    next hop 123.0.0.2 via 123.0.0.0/24
    Load distribution: 0 (refcount 1)
    Hash OK Interface
                                        Address
              GigabitEthernet0/2/1/9
                                        87.0.1.2
```

"show" commands (3)

```
RP/0/0/CPU0:hydra-prp-A# show route 123.0.0.2
Routing entry for 123.0.0.0/24
  Known via "ospf 100", distance 110, metric 2, type intra area
  Installed Feb 19 22:54:48.363 for 00:39:01
  Routing Descriptor Blocks
    87.0.1.2, from 3.3.3.3, via GigabitEthernet0/2/1/9
      Route metric is 2
  No advertising protos.
RP/0/0/CPU0: hydra-prp-A#
RP/0/0/CPU0:hydra-prp-A#show route 1.1.1.1
Routing entry for 1.1.1.1/32
  Known via "ospf 100", distance 110, metric 2, type intra area
  Installed Feb 19 22:54:49.259 for 00:49:20
  Routing Descriptor Blocks
    13.0.3.1, from 1.1.1.1, via GigabitEthernet0/2/1/5
      Route metric is 2
  No advertising protos.
```

Thank You

© 2012 Cisco and/or its affiliates. All rights reserved.